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ABSTRACT

Current advances in Generative Adversarial Networks allow us to generate near
realistic images but they are still quite distinguishable from actual photographs. The
technology is also not very amiable to changes in the orientation of images in
Convolutional Neural Networks(CNN). Additionally, the amount of data required to
train the network must be exhaustive, for example, in case different perspectives of a
face are required, the various perspectives must be explicitly present in the training
data to achieve the result. Thus the network requires humongous amounts of data.

In this project we propose a novel approach to accomplish the same task using
CapsNet. CapsNet employs a dynamic routing algorithm which replaces the
scalar-output feature detectors of the CNN with vector-output capsules. A capsule is
essentially a group of neurons describing a specific part of an object or image. Active
capsules at one level make predictions, via transformation matrices, for the
instantiation parameters of higher-level capsules. In essence, the CapsNet is the
reverse of the common Computer Graphics pipeline where we convert objects to their
renders. The CapsNet starts from the pixel level and works up towards the object.

We propose that the amount of data required to train a comparable model is very
small while it gives comparable, if not better, results.
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CHAPTER 1

INTRODUCTION

"What I cannot create, I do not understand."

Richard Feynman

One of the main aspirations of Artificial Intelligence is to develop algorithms and
techniques that enrich computers with ability to understand our world. Generative
models are one of the most promising approaches towards achieving this goal.

1.1 Generative Models

A generative model is a mathematical or statistical model to generate all values of
a phenomena. To train such a model, we first collect a large amount of data in some
domain (e.g., think millions of images, sentences, or sounds, etc.) and then train a
model to generate data like it.

A generative algorithm models how data was generated to classify a data instance.
It poses the question: according to my generation hypotheses, which category is most
likely to generate this data instance? A discriminative algorithm does not care about
how the data was generated, it just classifies a given data instance; that is, given the
features of a data instance, they predict a label or category to which that data belong.
Discriminative models learn the boundary between classes while Generative models
model the distribution of individual classes; that is, a generative model learns the joint
probability distribution p(x, y) while a discriminative model learns the conditional
probability distribution p(y|x), “probability of y given x”.

The trick is that the neural networks that we use as generating models have a
significantly smaller number of parameters than the amount of data on which we
train them, so the models are forced to effectively discover and internalize the
essence of the data to generate it.

There are multiple approaches to build generative models

1.1.1 Generative adversarial networks

Generative adversarial networks (GANs) are a class of generative algorithms used
in unsupervised machine learning, implemented by a system of two neural networks
competing in a zero-sum game framework. They were presented by Ian Goodfellow
et al. [13]. This technique can generate photographs that seem at least superficially
authentic to human observers, having many realistic features (though in tests people
can tell real from generated in some cases).
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1.1.2 Variational Autoencoders

An autoencoder network is actually a pair of two connected networks, an encoder
and a decoder. An encoder network receives an input and converts it into a smaller,
denser representation that the decoder network can use to convert back to the
original input. Variational Autoencoders (VAEs) have one fundamentally unique
property that separates them from vanilla autoencoders, and it is this property that
makes them so useful for generative modeling: their latent spaces are, by design,
continuous, allowing easy random sampling and interpolation. Variational
Autoencoders (VAEs) allow us to formalize generative modeling problem in the
framework of probabilistic graphical models where we are maximizing a lower
bound on the log likelihood of the data.

1.1.3 Autoregressive models

Autoregressive models such as PixelRNN train a network that models the
conditional distribution of every individual pixel given previous pixels (to the left
and to the top). These models efficiently generate independent,exact samples via
ancestral sampling. This is similar to plugging the pixels of the image into a char-rnn,
but the RNNs runs both horizontally and vertically over the image instead of just a
one dimensional sequence of characters.

1.2 Generative Adversarial Networks

Figure 1.1: Vanilla Generative Adversarial Network

Generative Adversarial Networks, which we already discussed above, pose the
training process as a game between two distinct networks: A neural network, called
the generator, generates new instances of data, while the other, the discriminator,
evaluates their authenticity; discriminator network tries to classify samples as either
coming from the true distribution, p(x), or the model distribution, p̂(x). Every time
the discriminator notices a difference between the two distributions, the generator
adjusts its parameters slightly to make it go away, until at the end (in theory) the
generator exactly reproduces the true data distribution and the discriminator is
guessing at random, unable to find a difference.

Department of CSE, Sir MVIT 2
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The generator takes noise as input and attempts to produce an image that belongs
to the real distribution; that is, it tries to fool the discriminator to accept it as real
image. Discriminator takes a generated image or a real image as input and attempts
to correctly classify the image as real or fake (generated).

To learn the distribution of the generator, pg, over data, x, we define a prior on
input noise variables, pz(z), then represent a mapping to data space as G(z; θg), where
G is a differentiable function represented by a neural network with parameters θg. We
define a second neural network, D(x; θd), that outputs a single scalar. D(x) represents
the probability that x came from the data rather than pg. We train D to maximize the
probability of assigning the correct label to the training examples and samples of G.
We simultaneously train G to minimize log(1 − D(G(z))).

This can be represented as a minimax game

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1.1)

1.3 Convolutional Neural Networks

Figure 1.2: Convolutional Neural Network

Before we can jump to understanding Capsule Networks we need to know about
Convolutional Neural Networks(CNNs). CNNs are very similar to ordinary neural
networks, they consist of neurons that have learn-able weights and biases. Each
neuron receives inputs, performs a scalar product and possibly follows it with a
nonlinearity. The entire network expresses a single differentiable score function: raw
image pixels at one end to class scores at the other end. And they still have a loss
function on the last layer.

The major difference is that CNN explicitly assumes that the inputs are images,
which allows us to encode certain properties in the architecture. These then make the
forward functions more efficient to implement and significantly reduces the amount
of parameters in the network.

Department of CSE, Sir MVIT 3
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Ordinary neural networks don’t scale well to full images, for example, a color
image with the dimensions of 150x150 (which is considered as low resolution by most
people) has a shape (150,150,3), a fully connected neuron on first layer which receives
this image would require 67500 weights. Unlike an ordinary neural network, the
layers of a CNN have neurons arranged in 3 dimensions: width, height, depth. The
neurons in a layer will only be connected to a small region of the layer before it,
instead of all of the neurons in a fully-connected manner. CNN will reduce the full
image into a single vector of class scores, arranged along the depth dimension. The
figure 1.2 shows VGG network, a simple convolutional neural network.

CNNs use a "pooling" layer to reduce the spatial size of the input for each
convolutional layer. The pooling layer operates independently on every depth slice
of the input and resizes it spatially, generally using the MAX operation, hence
pooling layer is sometimes referred to as Max Pooling layer.

1.4 Capsule Networks

“The pooling operation used in convolutional neural networks is a big mistake
and the fact that it works so well is a disaster”, says Geoffrey Hinton, one of the
founders of deep learning (also known as the Godfather of Deep Learning) and an
inventor of numerous models and algorithms that are widely used today. CNNs
perform exceptionally great when they are classifying images which are very close to
the data set. If the images have rotation, tilt or any other different orientation then
CNNs have poor performance. This problem is usually partially solved by adding
different variations of the same image during training. But CNNs still require large
amount of data to perform reasonably well. We use pooling after each layer to make
it compute in reasonable time frames. But in essence, it also loses out the positional
data.

Figure 1.3: Capsule Networks

Department of CSE, Sir MVIT 4
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What we need is not invariance but equivariance. Invariance makes a CNN
tolerant to small changes in the viewpoint. Equivariance makes a CNN understand
the rotation or proportion change and adapt itself accordingly so that the spatial
positioning inside an image is not lost. This leads us to Capsule Networks.

A capsule is a nested set of neural layers as shown in figure 1.3. Capsules are
like cortical columns in human brains. Deep neural nets learn by back-propagation
of errors over the entire network. In contrast real brains supposedly wire neurons by
Hebbian principles: "units that fire together, wire together". Capsules mimic Hebbian
learning in the way that: "A lower-level capsule prefers to send its output to higher
level capsules whose activity vectors have a big scalar product with the prediction
coming from the lower-level capsule". A combination of capsules encodes objects parts
AND their relative positions, so an object instance can be accurately derived from
the presence of the parts at the right locations, and not just their presence. Capsules
produce equivariant features. Capsules predict the activity of higher-layer capsules to
route information to the right higher-layer capsules, this is called "Dynamic routing".

1.5 Semantic Inpainting

To demonstrate the application of our modified GAN, we will be using Semantic
Inpainting. Inpainting is the process of reconstructing lost or deteriorated parts of
images and videos. In the museum world, in the case of a valuable painting, this task
would be carried out by a skilled art conservator or art restorer. In the digital world,
inpainting (also known as image interpolation or video interpolation) refers to the
application of sophisticated algorithms to replace lost or corrupted parts of the image
data (mainly small regions or to remove small defects). Manual computer methods
include using a clone tool or healing tool, to copy existing parts of the image to restore
a damaged image. Exemplar-based image inpainting attempts to automate the clone
tool process. It fills "holes" in the image by searching for similar patches in a nearby
source region of the image, and copying the pixels from the most similar patch into
the hole

Here we will be using a more robust approach of generating missing parts of the
image using GAN.

1.6 Scope of work

Generative Adversarial Networks are one of the hottest topics in Deep Learning
right now. The applications of GANs are far ranging and immense. Creating Info-
graphics from text, creating animations for rapid development of marketing content,
generating website designs, are to name a few. Our focus in this project is to implement
a way to complete images of faces by generating the missing pieces using a GAN.

This particular implementation of the technology would be immensely useful in a
variety of circumstances. A few straightforward applications include face sketching
of suspects in a crime using eye witness accounts, super resolution of CCTV camera
footage to enhance faces, filling in of old degraded color photos, etc.

Department of CSE, Sir MVIT 5
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1.7 Motivation

The existing state-of-the-art in GAN architectures use Convolution Neural
Networks in their Generators and Discriminators. The CNNs have the drawbacks
mentioned before, where they cannot understand orientation and spatial
relationships unless they are extensively trained with all possible images. This major
drawback is handled by Capsule Networks.

Using the CapsNet architecture into the Generator/Discriminator could improve
these Adversarial Networks quite drastically. This mating of the revolutionary
Generative Adversarial Networks along with the ground-breaking Capsule
Networks, resulting in “Capsule Net GANs” is the overarching objective.

Department of CSE, Sir MVIT 6
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CHAPTER 2

LITERATURE SURVEY

“Adversarial training is the coolest thing since sliced bread”

Yann LeCun,
Director of AI Research at Facebook and Professor at NYU

GANs were first introduced by Ian Goodfellow et al. [13] in Neural Information
Processing Systems 2014. The paper proposes a completely new framework for
estimating generative models via an adversarial process. In this process two models
are simultaneously trained. According to [13] the network has a generative model G
that captures the data distribution, and a discriminative model D that estimates the
probability that a sample came from the training data rather than G. This original
work by Ian Goodfellow uses fully connected neural networks in the generator and
the discriminator.

2.1 DCGAN

Since GANs were introduced, there has been tremendous advancements in Deep
Learning. A convolutional neural network (CNN, or ConvNet) [15] is a class of deep,
feed-forward artificial neural networks that has successfully been applied to analyzing
visual imagery. The convolution layer parameters consist of a set of learn-able filters,
also called as kernels, which have a small receptive field, but they extend through the
full depth of the input volume. As a result, the network learns filters that activate
when it detects some specific type of feature at some spatial position in the input.

A breakthrough development that occurred in Adversarial Networks was the
introduction of “Deep Convolutional Generative Adversarial Networks” by Alec
Radford et al. [12]. DCGAN uses CNNs as generator and discriminator as shown in
2.1. He applied a list of empirically validated tricks as a substitution for pooling and
fully connected layers with convolutional layers.

Figure 2.1: Deep Convolutional Generative Adversarial Network

Today, most GANs are loosely based on the former shown DCGAN [12]
architecture. Many papers have focused on improving the setup to enhance stability

Department of CSE, Sir MVIT 7
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and performance. Many key insights was given by Salimans et al. [8], like Usage of
convolution with stride instead of pooling, Usage of Virtual Batch Normalization,
Usage of Minibatch Discrimination in DD, Replacement of Stochastic Gradient
Descent with Adam Optimizer [6], and Usage of one-sided label smoothing.

2.2 InfoGAN

The power of the features encoded in the latent variables was further explored by
Chen et al. [4]. They propose an algorithm which is completely unsupervised, unlike
previous approaches which involved supervision, and learns interpretable and
disentangled representations on challenging datasets. Their approach only adds a
negligible computation cost on top of GAN and is easy to train.

2.3 ACGAN

Augustus Odena et al. [7] came up with an improved training mechanism and
variant of GAN employing label conditioning that results in image samples exhibiting
global coherence. ACGAN uses an auxiliary classifier to control the minimax game
between generator and discriminator. In their work they demonstrate that adding
more structure to the GAN latent space along with a specialized cost function results
in higher quality samples

2.4 WGAN

Another huge development came with the introduction of Wasserstein GANs by
Martin Arjovsky [1] . He introduced a new algorithm named WGAN, an alternative
to traditional GAN training. In this new model, he showed that the stability of
learning can be improved, problems like mode collapse are removed, and provide
good learning curves useful for debugging and hyperparameter searches were
obtained.

This recently proposed Wasserstein GAN (WGAN) [1] makes progress toward
stable training of GANs, but sometimes can still generate only low-quality images or
fail to converge. Ishaan Gulrajani with Martin Arjovsky proposed an alternative in
[2] to fix the issues the previous GAN faced. This proposed method performs better
than standard WGAN and enables stable training on a wide variety of GAN
architectures with almost no hyperparameter tuning, including 101-layer ResNets
[11] and language models over discrete data.

2.5 Other GANs

Work by Mehdi Mirza et al. [14] introduced the conditional version of GAN which
can be constructed by simply feeding the data we wish to condition on to both the
generator and discriminator. The CGAN results were comparable with some other
networks, but were outperformed by several other approaches – including non
conditional adversarial nets.

Department of CSE, Sir MVIT 8
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Sebastian Nowozin et al. [6] discussed the benefits of various choices of divergence
functions on training complexity and the quality of the obtained generative models.
They show that any f-divergence can be used for training generative neural samplers.

Ming-Yu et al. [5] proposed coupled generative adversarial network (CoGAN) for
learning a joint distribution of multi-domain images. The existing approaches require
tuples of corresponding images in different domains in the training data set. CoGAN
can learn a joint distribution without any tuple of corresponding images.

2.6 Capsule Neural Network

A big breakthrough in the field of Deep Learning came with the introduction of
CapsNets or Capsule Networks [3] by the Godfather of Deep Learning, Geoffrey
Hinton. CNNs perform exceptionally great when they are classifying images which
are very close to the data set. If the images have rotation, tilt, or any other different
orientation then CNNs have poor performance. A capsule is a group of neurons
whose activity vector represents the instantiation parameters of a specific type of
entity such as an object or an object part. They use the length of the activity vector to
represent the probability that the entity exists and its orientation to represent the
instantiation parameters. Active capsules at one level make predictions, via
transformation matrices, for the instantiation parameters of higher-level capsules.
When multiple predictions agree, a higher level capsule becomes active. They show
that a discrimininatively trained, multi-layer capsule system achieves state-of-the-art
performance on MNIST and is considerably better than a convolutional net at
recognizing highly overlapping digits. To achieve these results they use an iterative
routing-by-agreement mechanism: a lower-level capsule prefers to send its output to
higher level capsules whose activity vectors have a big scalar product with the
prediction coming from the lower-level capsule.

Department of CSE, Sir MVIT 9



CHAPTER 3
TECHNOLOGY



Image Regeneration with Generative Models Technology

CHAPTER 3

TECHNOLOGY

“I think, therefore I am”

René Descartes,
French philosopher and scientist

Deep learning frameworks offer flexibility with designing and training custom
deep neural networks and provide interfaces to common programming language. We
used the following frameworks and technologies in our project.

3.1 Tensorflow

TensorFlow is an open source software library for high performance numerical
computation. Its flexible architecture allows easy deployment of computation across
a variety of platforms (CPUs, GPUs, TPUs), and from desktops and clusters of
servers to mobile and edge devices. Originally developed by researchers and
engineers from the Google Brain team within Google’s AI organization, it comes with
strong support for machine learning and deep learning and the flexible numerical
computation core is used across many other scientific domains. TensorFlow, as the
name indicates, is a framework to define and run computations involving tensors. A
tensor is a generalization of vectors and matrices to potentially higher dimensions.
Internally, TensorFlow represents tensors as n-dimensional arrays of base data types.
TensorFlow uses a data flow graph to represent your computation in terms of the
dependencies between individual operations. This leads to a low-level programming
model in which you first define the data flow graph, then create a TensorFlow session
to run parts of the graph across a set of local and remote devices.

We use Tensorflow when we need access to low level API such as metric functions
or auto gradient functions.

3.2 Keras

Keras is a high-level neural networks API, written in Python and capable of
running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on
enabling fast experimentation. It puts user experience front and center. Keras follows
best practices for reducing cognitive load: it offers consistent & simple APIs, it
minimizes the number of user actions required for common use cases, and it provides
clear and actionable feedback upon user error. A model is understood as a sequence
or a graph of standalone, fully-configurable modules that can be plugged together
with as little restrictions as possible. In particular, neural layers, cost functions,
optimizers, initialization schemes, activation functions, regularization schemes are all
standalone modules that you can combine to create new models. This allows for total
expressiveness, making Keras suitable for advanced research.
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We use Keras as our primary Deep learning library. Most of our code uses Keras as
its underlying infrastructure.

3.3 PyTorch

PyTorch is a relatively new framework. PyTorch provides Tensors that can live
either on the CPU or the GPU, and accelerate compute by a huge amount. It also
provides a wide variety of tensor routines to accelerate and fit your scientific
computation needs such as slicing, indexing, math operations, linear algebra and
reductions. PyTorch has a unique way of building neural networks: using and
replaying a tape recorder. Most frameworks such as TensorFlow, Theano, Caffe and
CNTK have a static view of the world. One has to build a neural network, and reuse
the same structure again and again. Changing the way the network behaves means
that one has to start from scratch. With PyTorch, it uses a technique called
Reverse-mode auto-differentiation, which allows you to change the way your
network behaves arbitrarily with zero lag or overhead. Its inspiration comes from
several research papers on this topic, as well as current and past work such as
autograd, Chainer, etc. While this technique is not unique to PyTorch, it’s one of the
fastest implementations of it to date.

We have a simple proof of concept implementation of our project in PyTorch, which
can easily be extended to other GANs.

3.4 Google Colaboratory

Colaboratory is a Google research project created to help disseminate machine
learning education and research. It’s a Jupyter notebook environment that requires
no setup to use and runs entirely in the cloud. We can use GPU as a back-end for free
for 12 hours at a time. The GPU used in the back-end is Nvidia Tesla K80.
Colaboratory notebooks are stored in Google Drive and can be shared just as you
would with Google Docs or Sheets. Colaboratory supports both Python2 and
Python3 for code execution. It has Intel Xeon 2vCPU running at 2.2 GHz, 13 GB RAM
and 33 GB storage space.

We used Google Colaboratory extensively for our project. We trained and tested all
of our models on Colaboratory. It provides an average 10 times speed-up as compared
to running on a local machine.

3.5 Matplotlib

Matplotlib is a Python 2D plotting library which produces publication quality
figures in a variety of hardcopy formats and interactive environments across
platforms. Matplotlib can be used in Python scripts, the Python and IPython shells,
the Jupyter notebook, web application servers, and four graphical user interface
toolkits.

We made use of Matplotlib to visualize the various graphs. The output images and
data of the training were also obtained Matplotlib.
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3.6 Flask

Flask is a micro web framework written in Python and based on the Werkzeug
toolkit and Jinja2 template engine.

We used Flask to port our python demonstration code onto a webapp. It forms
an intermediary between the python code on the server and the front-end HTML and
JavaScript.

3.7 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer
vision and machine learning software library. OpenCV was built to provide a
common infrastructure for computer vision applications and to accelerate the use of
machine perception in the commercial products. Being a BSD-licensed product,
OpenCV makes it easy for businesses to utilize and modify the code. The library has
more than 2500 optimized algorithms, which includes a comprehensive set of both
classic and state-of-the-art computer vision and machine learning algorithms. These
algorithms can be used to detect and recognize faces, identify objects, classify human
actions in videos, track camera movements, track moving objects, extract 3D models
of objects, produce 3D point clouds from stereo cameras, stitch images together to
produce a high resolution image of an entire scene, find similar images from an image
database, remove red eyes from images taken using flash, follow eye movements,
recognize scenery and establish markers to overlay it with augmented reality, etc.

Our project uses OpenCV for various in-house code snippets. It forms an essential
part in dealing with images.
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CHAPTER 4

SYSTEM REQUIREMENTS

“Any A.I. smart enough to pass a Turing test is smart enough to know to
fail it.”

Ian McDonald,
River of Gods

4.1 Functional Requirements

The system must, at the minimum, fulfill certain basic requirements.

1. Take a latent space vector or noise as input.

2. Learn joint probability distribution of training images.

3. Generate a realistic image of the training distribution that doesn’t belong to
training set.

4. Use a binary Capsule network classifier to differentiate real and fake image.

4.2 Non Functional Requirements

The system should have following non functional requirements. These specify the
qualities of the system.

1. Efficient, Fast forward- and backward- propagation.

2. Curb data usage while maintaining high quality results.

4.3 Development Requirement

System requirements for training and demonstrating of the models

4.3.1 Training System Requirements

For training the model,

1. python 3.4 or above

2. Tensorflow 1.7 or above

3. Keras 2.1.6 or above

4. Numpy, Scipy, Matplotlib
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5. OpenCV 2

6. CPU 1.6 GHz or above

7. Nvdia GPU with CUDA compatibility 3.5 or above

8. RAM 8GB or above

9. Disk storage 20GB or above

4.3.2 Demonstration System Requirements

For evaluating the model or just forward-propagation,

1. python 3.4 or above

2. Flask

3. Browser - Google Chrome

4. Tensorflow 1.7 or above

5. Keras 2.1.6 or above

6. Numpy, Scipy, Matplotlib

7. OpenCV 2

8. CPU 1 GHz or above

9. RAM 4GB or above

10. Disk storage 20GB or above
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CHAPTER 5

PROPOSED ARCHITECTURE

“Artificial intelligence, in fact, is obviously an intelligence transmitted by
conscious subjects, an intelligence placed in equipment.”

Pope Benedict XVI

The generator will use noise as input to generate faces. We will use random data
as this noise. This ensures the data is unique and across the spectrum while retaining
a normal distribution.

The CapsNet making up the discriminator consists of a small convolutional
network to convert low level data in the form of pixels into an artifact called "pose".
These poses can be anything, like nose, ear, eye, etc. These poses are then passed on
as input to the lower layers consisting of components called Capsules. A capsule is
analogous to the human brain containing different modules to handle different tasks.
The brain has a mechanism to route the information among the modules, to reach the
best modules that can handle the information.

A capsule is a nested set of neural layers. Each capsule is able to handle one
particular pose and communicate its calculation to other capsules which can use that
calculation. This calculation is in the form of a probability prediction of the current
pose that takes place in its logistic unit. This working is fundamentally different from
convolutional networks, which utilizes max pooling. Max pooling selects the most
active input node from the next layer to pass on the information. CapsNet on the
other hand selects the next capsule based on which capsule would be capable of
handling that information. This is called Dynamic routing. This results in
equivariance of information to the position and orientation of features in an object
while ignoring the invariance in very low level features as, at the pixel level, this does
not matter.

5.1 Generator

We use a deep convolutional generator model, which is similar to what DCGAN
uses as generator. It starts with a latent vector or noise of shape 100 which connects to
a densely connected neural layer. We then use Reshape layer which reshapes it to an
(8, 8, 128) matrix and which is then sent to the batch normalization layer. We later
perform up-sampling by using DeConv (De-Convolutional layer: transposed
convolutional layer). DeConv layer is internally implemented by an up-sampling
layer and a convolutional layer. We perform DeConv two more times to get the shape
of the image as expected, which should be (64, 64, 3), which stands for a 64x64 RGB
image.

Department of CSE, Sir MVIT 15



Image Regeneration with Generative Models Proposed Architecture

Figure 5.1: Generator architecture

5.2 Discriminator

Figure 5.2: Discriminator architecture

The discriminator in the original models is replaced by our modification of
CapsNet. We use a binary classifier CapsNet to distinguish between real and fake
images.

The CapsNet has 2 parts: encoder and decoder. The first 3 layers are encoder and
the next 3 are decoder:

Layer 1. Convolutional layer
Layer 2. PrimaryCaps layer
Layer 3. DigitCaps layer
Layer 4. Fully connected #1
Layer 5. Fully connected #2
Layer 6. Fully connected #3

In our implementation we do not use the decoder layers as we do not need the
reconstruction aspects of the network for classification. Hence only the encoder layers
are used.

The encoding part of the network takes as input a digital image of size 64x64 and
learns to encode it into a vector of 16 dimensions of instantiation parameters, this is
where the capsules do their job. The output of the network during prediction is a
10-dimensional vector of the lengths of the DigitCaps’ outputs.
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5.2.1 Layer 1: Convolutional Layer

Input: 64x64 image (three color channel).
Output: 56x56x256 tensor.
Number of parameters: 62464.

The work of the convolutional layer consists of detecting the basic functions in the
2D image. In the CapsNet system, the convolutional layer has 256 kernels of size 9x9x1
and stride of 1, followed by the activation function, ReLU. To calculate the number of
parameters, we must also remember that each kernel in a convolutional layer has 1
bias term. Therefore, this layer has (9 x 9 x 3 x 256 + 256 =) 62464 trainable parameters
in total.

5.2.2 Layer 2: PrimaryCaps Layer

Input: 56x56x256 tensor.
Output: 24x24x8x32 tensor.
Number of parameters: 5308672.

This layer has 32 primary capsules whose job is to take basic features detected by
the convolutional layer and produce combinations of the features. The layer has 32
“primary capsules” that are very similar to convolutional layer in their nature. Each
capsule applies eight 9x9x256 convolutional kernels to the 56x56x256 input volume
and therefore produces 24x24x8 output tensor. Since there are 32 such capsules, the
output volume has shape of 24x24x8x32. Doing calculation similar to the one in the
previous layer, we get (9 x 9 x 256 x 256 + 256 =) 5308672 trainable parameters in this
layer.

5.2.3 Layer 3: DigitCaps Layer

Input: 24x24x8x32 tensor.
Flattened to: 147456
Output: 1x1 matrix.
Number of parameters: 1497600.

We have a 3 hidden-layer densely connected neural network which takes the
flattened input to give a binary classification output of 1x1. Each hidden layer
consists of 160 neurons. From the flattened input we get the input of size 147456
which is connected densely to the first hidden layer. Thus the weights in the first
layer turn out to be (147456 x 160 + 160 =) 23593120 in number. The first hidden layer
is connected to the second hidden layer densely, similarly the second and the third.
Therefore there are (160 x 160 + 160 =) 25760 trainable parameters for the second and
third hidden layers.

The last last hidden layer is connected to a output layer with one neuron, which
essentially gives the binary classification result. Its parameters are (160 x 1 + 1 =) 161
in number.
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CHAPTER 6

IMPLEMENTATION

“The portion of evolution in which animals developed eyes was a big
development. Now computers have eyes.”

Jeff Dean,
Lead of Google Brain

The first step is to implement the state-of-the-art in image regeneration to guage
the improvements. We use DCGAN to start of with. The results of the training and
testing will be recorded to compare it with the results of our CapsNet-based
approach later. We will be using CapsNet as the underlying technology to implement
our GAN (CapsGAN). The goal is to replace the CNN inside DCGAN with CapsNet
and compare the results. The GAN internally consists of two components - a
generator and a discriminator - which we build out of CapsNet. The discriminator is
initially trained separately to distinguish between real and fake data, and later they
work together to improve upon their performance by acting as adversaries.

Figure 6.1: CapsDCGAN Architecture

During the course of our research we were forced to conclude that building a
CapsNet based generator was not feasible. A fundamental aspect of CapsNet is
dynamic routing which is not possible to replicate in the generator, that is, dynamic
routing cannot be inverted. Hence we implemented just the discriminator in
CapsNet.

We concentrated on four networks: DCGAN, WGAN, ACGAN and InfoGAN. Our
training laboratory was Colaboratory - the cloud machine learning research platform.
We trained each network individually for 20,000 epochs each. For our preliminary
training we used the MNIST dataset [17]. The MNIST dataset is a large dataset of
handwritten digits commonly used for image processing training tasks. Each of the
networks had it’s discriminator augmented with the CapsNet code. The networks
with the CapsNet discriminator were then individually trained on the same dataset,
for 20,000 epochs each. Overall, it took us a few days to train all the networks and
gather all the data.
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6.1 Network Architectures

The following are the network architecture summary of the generator and the
discriminator. None here represents the batch size which is decided at run time.

6.1.1 Discriminator

____________________________________________________________________________________________
Layer ( type ) Output Shape Param # Connected t o
============================================================================================
input_1 ( InputLayer ) ( None , 64 , 64 , 3 ) 0
____________________________________________________________________________________________
conv1 (Conv2D) ( None , 56 , 56 , 256) 62464 input_1 [ 0 ] [ 0 ]
____________________________________________________________________________________________
leaky_re_ lu_1 ( LeakyReLU ) ( None , 56 , 56 , 256) 0 conv1 [ 0 ] [ 0 ]
____________________________________________________________________________________________
batch_normal izat ion_1 ( BatchNor ( None , 56 , 56 , 256) 1024 leaky_re_ lu_1 [ 0 ] [ 0 ]
____________________________________________________________________________________________
primarycap_conv2 (Conv2D) ( None , 24 , 24 , 256) 5308672 batch_normal izat ion_1 [ 0 ] [ 0 ]
____________________________________________________________________________________________
primarycap_reshape ( Reshape ) ( None , 18432 , 8 ) 0 primarycap_conv2 [ 0 ] [ 0 ]
____________________________________________________________________________________________
primarycap_squash ( Lambda ) ( None , 18432 , 8 ) 0 primarycap_reshape [ 0 ] [ 0 ]
____________________________________________________________________________________________
batch_normal izat ion_2 ( BatchNor ( None , 18432 , 8 ) 32 primarycap_squash [ 0 ] [ 0 ]
____________________________________________________________________________________________
f l a t t e n _ 1 ( F l a t t e n ) ( None , 147456) 0 batch_normal izat ion_2 [ 0 ] [ 0 ]
____________________________________________________________________________________________
uhat_dig i t caps ( Dense ) ( None , 160) 23593120 f l a t t e n _ 1 [ 0 ] [ 0 ]
____________________________________________________________________________________________
sof tmax_digi tcaps1 ( Act iva t ion ) ( None , 160) 0 uhat_dig i t caps [ 0 ] [ 0 ]
____________________________________________________________________________________________
dense_1 ( Dense ) ( None , 160) 25760 sof tmax_digi tcaps1 [ 0 ] [ 0 ]
____________________________________________________________________________________________
mult iply_1 ( Multiply ) ( None , 160) 0 uhat_dig i t caps [ 0 ] [ 0 ]

dense_1 [ 0 ] [ 0 ]
____________________________________________________________________________________________
leaky_re_ lu_2 ( LeakyReLU ) ( None , 160) 0 mult iply_1 [ 0 ] [ 0 ]
____________________________________________________________________________________________
sof tmax_digi tcaps2 ( Act iva t ion ) ( None , 160) 0 leaky_re_ lu_2 [ 0 ] [ 0 ]
____________________________________________________________________________________________
dense_2 ( Dense ) ( None , 160) 25760 sof tmax_digi tcaps2 [ 0 ] [ 0 ]
____________________________________________________________________________________________
mult iply_2 ( Multiply ) ( None , 160) 0 uhat_dig i t caps [ 0 ] [ 0 ]

dense_2 [ 0 ] [ 0 ]
____________________________________________________________________________________________
leaky_re_ lu_3 ( LeakyReLU ) ( None , 160) 0 mult iply_2 [ 0 ] [ 0 ]
____________________________________________________________________________________________
sof tmax_digi tcaps3 ( Act iva t ion ) ( None , 160) 0 leaky_re_ lu_3 [ 0 ] [ 0 ]
____________________________________________________________________________________________
dense_3 ( Dense ) ( None , 160) 25760 sof tmax_dig i tcaps3 [ 0 ] [ 0 ]
____________________________________________________________________________________________
mult iply_3 ( Multiply ) ( None , 160) 0 uhat_dig i t caps [ 0 ] [ 0 ]

dense_3 [ 0 ] [ 0 ]
____________________________________________________________________________________________
leaky_re_ lu_4 ( LeakyReLU ) ( None , 160) 0 mult iply_3 [ 0 ] [ 0 ]
____________________________________________________________________________________________
dense_4 ( Dense ) ( None , 1 ) 161 leaky_re_ lu_4 [ 0 ] [ 0 ]
============================================================================================
Tota l params : 29 ,042 ,753
Tra inable params : 29 ,042 ,225
Non−t r a i n a b l e params : 528
____________________________________________________________________________________________
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6.1.2 Generator

_________________________________________________________________
Layer ( type ) Output Shape Param #
=================================================================
dense_5 ( Dense ) ( None , 8192) 827392
_________________________________________________________________
reshape_1 ( Reshape ) ( None , 8 , 8 , 128) 0
_________________________________________________________________
batch_normal izat ion_3 ( Batch ( None , 8 , 8 , 128) 512
_________________________________________________________________
up_sampling2d_1 ( UpSampling2 ( None , 16 , 16 , 128) 0
_________________________________________________________________
conv2d_1 (Conv2D) ( None , 16 , 16 , 128) 147584
_________________________________________________________________
a c t i v a t i o n _ 1 ( Act iva t ion ) ( None , 16 , 16 , 128) 0
_________________________________________________________________
batch_normal izat ion_4 ( Batch ( None , 16 , 16 , 128) 512
_________________________________________________________________
up_sampling2d_2 ( UpSampling2 ( None , 32 , 32 , 128) 0
_________________________________________________________________
conv2d_2 (Conv2D) ( None , 32 , 32 , 64) 73792
_________________________________________________________________
a c t i v a t i o n _ 2 ( Act iva t ion ) ( None , 32 , 32 , 64) 0
_________________________________________________________________
batch_normal izat ion_5 ( Batch ( None , 32 , 32 , 64) 256
_________________________________________________________________
up_sampling2d_3 ( UpSampling2 ( None , 64 , 64 , 64) 0
_________________________________________________________________
conv2d_3 (Conv2D) ( None , 64 , 64 , 32) 18464
_________________________________________________________________
a c t i v a t i o n _ 3 ( Act iva t ion ) ( None , 64 , 64 , 32) 0
_________________________________________________________________
batch_normal izat ion_6 ( Batch ( None , 64 , 64 , 32) 128
_________________________________________________________________
conv2d_4 (Conv2D) ( None , 64 , 64 , 3 ) 867
_________________________________________________________________
a c t i v a t i o n _ 4 ( Act iva t ion ) ( None , 64 , 64 , 3 ) 0
=================================================================
Tota l params : 1 ,069 ,507
Tra inable params : 1 ,068 ,803
Non−t r a i n a b l e params : 704
_________________________________________________________________

6.2 Demonstration

The training of the models took place on Colaboratory, over Keras. Keras provided
for a fast implementation of the code and high level abstraction. The output model
was in the format of H5. This could not be directly used as part of semantic inpainting
as semantic inpainting requires changing low level architectural details which Keras
does not allow. Hence we converted the H5 model to TensorFlow protocol buffer,
which is TensorFlow’s model saving format, the code for which can be found in 7.2.1.

For the semantic inpainting, we take as input an image. The image is loaded onto a
canvas with an ability to mask a part of the image. Once the mask is set, our processing
starts. The following process is based on Raymond A. Yeh et al. [9]

The masked image is a Hadamard product of the mask component, M, and the
original input image, y.

MaskedImage = M ⊙ y (6.1)

Suppose we’ve found an image from the generator G(ẑ) for some ẑ that gives a
reasonable reconstruction of the missing portions. The completed pixels (1 − M) ⊙
G(ẑ) can be added to the original pixels to create the reconstructed image:

xreconstructed = M ⊙ y + (1 − M)⊙ G(ẑ) (6.2)
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Now all that is needed is to find a G(ẑ) that does a good enough job of completing
the image. We will consider a loss function, a smaller value of which means that z
is more suitable for completion. The total loss function will be a sum of two loss
functions: Contextual and Perceptual.

6.2.1 Contextual Loss

To keep the same context as the input image, make sure the known pixel locations
in the input image y are similar to the pixels in G(z). We need to penalize G(z) for
not creating a similar image for the pixels that we know about. Formally, we do this
by element-wise subtracting the pixels in y from G(z) and looking at how much they
differ:

Lcontextual(z) = ||M ⊙ G(m)+ (1 − M)⊙ G(ẑ)||1 (6.3)

where ||x||1 = ∑ i|xi| is the l1 norm of some vector x.

6.2.2 Perceptual Loss

To recover an image that looks real, let’s make sure the discriminator is properly
convinced that the image looks real. We’ll do this with the same criterion used in
training the network:

Lperceptual(z) = log(1 − D(G(z))) (6.4)

6.2.3 Total Loss

We now find ẑ with a combination of the contextual and perceptual losses:

L(z) = Lcontextual(z) + λLperceptual(z) (6.5)

ẑ = arg min
z

L(z) (6.6)

where λ is a hyper-parameter that controls how important the contextual loss is
relative to the perceptual loss. Then, as before, the reconstructed image fills in the
missing values of y with G(z):

xreconstructed = M ⊙ y + (1 − M)⊙ G(ẑ) (6.7)
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6.2.4 Projected Gradient Descent

For minimizing the loss function we use projected gradient descent. Its different
from gradient descent in the sense, at a basic level, projected gradient descent is just a
more general method for solving a more general problem. Gradient descent
minimizes a function by moving in the negative gradient direction at each step. There
is no constraint on the variable.

Problem 1: min
x

f (x)

xk+1 = xk − tk∇ f (xk) (6.8)

On the other hand, projected gradient descent minimizes a function subject to a
constraint. At each step we move in the direction of the negative gradient, and then
"project" onto the feasible set.

Problem 2: min
x

f (x) subject to x ∈ C

yk+1 = xk − tk∇ f (xk)

xk+1 = arg min
x∈C

‖yk+1 − x‖ (6.9)
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CHAPTER 7

CODE SNIPPETS

“By far the greatest danger of Artificial Intelligence is that people conclude
too early that they understand it.”

Eliezer Yudkowsky,
Machine Intelligence Research Institute

7.1 GAN Training

The internal architectures of all four GANs are similarly designed. Here we take
DCGAN to showcase the code.

The main code consists of a class (DCGAN) which contains the following six
functions:

1. Initialization: Calls build_generator and build_discriminator and makes a
combined model

2. Build_Generator: Creates a generator model

3. Build_Discriminator: Creates a discriminator model

4. Train: Takes the input images and starts training, prints training progress with
metrics

5. Save_Imgs: Saves a grid of generated images at specific epochs

6. Save_models: Saves the current model to disk

7.1.1 Initialization

def _ _ i n i t _ _ ( s e l f ) :
# Input s h a p e
s e l f . img_rows = 64
s e l f . img_cols = 64
s e l f . channels = 3
s e l f . img_shape = ( s e l f . img_rows , s e l f . img_cols , s e l f . channels )
s e l f . la tent_dim = 100

optimizer = Adam( 0 . 0 0 0 2 , 0 . 5 )

# B u i l d and c o m p i l e t h e d i s c r i m i n a t o r
s e l f . d i s c r i m i n a t o r = s e l f . b u i l d _ d i s c r i m i n a t o r ( )
s e l f . d i s c r i m i n a t o r . compile ( l o s s = ’ b inary_crossentropy ’ ,

opt imizer=optimizer ,
metr i cs =[ ’ accuracy ’ ] )

# B u i l d t h e g e n e r a t o r
s e l f . generator = s e l f . bui ld_generator ( )

# The g e n e r a t o r t a k e s n o i s e a s i n p u t and g e n e r a t e s imgs
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z = Input ( shape = ( 1 0 0 , ) )
img = s e l f . generator ( z )

# For t h e combined model on ly t r a i n t h e g e n e r a t o r
s e l f . d i s c r i m i n a t o r . t r a i n a b l e = Fa l se

# The d i s c r i m i n a t o r t a k e s g e n e r a t e d images as
# i n p u t and d e t e r m i n e s v a l i d i t y
val id = s e l f . d i s c r i m i n a t o r ( img )

# The combined model ( s t a c k e d g e n e r a t o r and d i s c r i m i n a t o r )
s e l f . combined = Model ( z , va l id )
s e l f . combined . compile ( l o s s = ’ b inary_crossentropy ’ , opt imizer=optimizer )

7.1.2 Build Generator

def bui ld_generator ( s e l f ) :
"""
B u i l d g e n e r a t o r which t a k e s n o i s e ( a t e n s o r o f s i z e 100) as input ,
and p r o d u c e s an RGB image o f s i z e (64 x 64) .
"""

# C r e a t e a model in which one can add l a y e r s s e q u e n t i a l l y
model = Sequent ia l ( )

# Add a d e n s e l y c o n n e c t e d l a y e r t o t h e model ,
# a c t i v a t i o n f u n c t i o n o f ReLu
model . add ( Dense (128 ∗ 8 ∗ 8 , a c t i v a t i o n =" r e l u " ,

input_shape =( s e l f . latent_dim , ) ) )
model . add ( Reshape ( ( 8 , 8 , 1 2 8 ) ) )

# DeConv l a y e r one s t a r t s
model . add ( BatchNormalization (momentum= 0 . 8 ) )
model . add ( UpSampling2D ( ) )
model . add (Conv2D( 1 2 8 , k e r n e l _ s i z e =3 , padding=" same " ) )
model . add ( Act iva t ion ( " r e l u " ) )

# DeConv l a y e r two s t a r t s
model . add ( BatchNormalization (momentum= 0 . 8 ) )
model . add ( UpSampling2D ( ) )
model . add (Conv2D ( 6 4 , k e r n e l _ s i z e =3 , padding=" same " ) )
model . add ( Act iva t ion ( " r e l u " ) )

# DeConv l a y e r t h r e e s t a r t s
model . add ( BatchNormalization (momentum= 0 . 8 ) )
model . add ( UpSampling2D ( ) )
model . add (Conv2D ( 3 2 , k e r n e l _ s i z e =3 , padding=" same " ) )
model . add ( Act iva t ion ( " r e l u " ) )

# F i n a l o u t pu t l a y e r
model . add ( BatchNormalization (momentum= 0 . 8 ) )
model . add (Conv2D( s e l f . channels , k e r n e l _ s i z e =3 , padding=" same " ) )
model . add ( Act iva t ion ( " tanh " ) )

# P r i n t model summary
model . summary ( )

# Use f u n c t i o n a l API t o make model
noise = Input ( shape =( s e l f . latent_dim , ) )
img = model ( noise )

# Return f u n c t i o n a l model
return Model ( noise , img )

7.1.3 Build Discriminator

def b u i l d _ d i s c r i m i n a t o r ( s e l f ) :
"""
D i s c r i m i n a t o r t a k e s r e a l / g e n e r a t e d images and o u t p u t s i t s p r e d i c t i o n .
"""

# D e f i n e i n p u t s h a p e f o r our network
img = Input ( shape= s e l f . img_shape )
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# F i r s t ConvLayer o u t p u t s a 56 x56x256 m a t r i x
x = Conv2D( f i l t e r s =256 , k e r n e l _ s i z e =9 , s t r i d e s =1 ,

padding= ’ va l id ’ , name= ’ conv1 ’ ) ( img )
x = LeakyReLU ( ) ( x )
x = BatchNormalization (momentum= 0 . 8 ) ( x )

# Capsu l e a r c h i t e c t u r e s t a r t s

# F i r s t l a y e r : PrimaryCaps
x = Conv2D( f i l t e r s =8 ∗ 32 , k e r n e l _ s i z e =9 , s t r i d e s =2 ,

padding= ’ va l id ’ , name= ’ primarycap_conv2 ’ ) ( x )

# Primary c a p s u l e has c o l l e c t i o n s o f a c t i v a t i o n s which d e n o t e o r i e n t a t i o n
# w h i l e i n t e n s i t y o f t h e v e c t o r which d e n o t e s t h e p r e s e n c e o f t h e d i g i t )
x = Reshape ( target_shape =[−1 , 8 ] , name= ’ primarycap_reshape ’ ) ( x )

# Output a number be tween 0 and 1 f o r e a c h c a p s u l e
# where t h e l e n g t h o f t h e i n p u t d e c i d e s t h e amount
x = Lambda ( squash , name= ’ primarycap_squash ’ ) ( x )
x = BatchNormalization (momentum= 0 . 8 ) ( x )

# Second l a y e r : Dig i tCaps
# Th i s i s a m o d i f i e d form o f t h e s t a n d a r d CapsNet Dig i tCaps a r c h i t e c t u r e
# where we have r e p l a c e d t h e m u l t i p l e c a p s u l e s wi th a s i n g l e c a p s u l e o f
# d e n s e l y c o n n e c t e d n e u r a l ne twork .
x = F l a t t e n ( ) ( x )

# Dynamic Rout ing
# uhat = p r e d i c t i o n v e c t o r , u ∗ w
# w = w e i gh t m at r i x but w i l l a c t a s a d e n s e l a y e r
# u = o ut pu t from a p r e v i o u s l a y e r
uhat = Dense ( 1 6 0 , k e r n e l _ i n i t i a l i z e r = ’ he_normal ’ ,

b i a s _ i n i t i a l i z e r = ’ zeros ’ , name= ’ uhat_dig i t caps ’ ) ( x )

# s o f t m a x w i l l make s u r e t h a t e a c h w e igh t c _ i j i s a non−n e g a t i v e number
# and t h e i r sum e q u a l s t o one
c = Act iva t ion ( ’ softmax ’ , name= ’ sof tmax_digi tcaps1 ’ ) ( uhat )

# s _ j ( o u t pu t o f t h e c u r r e n t c a p s u l e l e v e l ) = uhat ∗ c
c = Dense ( 1 6 0 ) ( c ) # compute s _ j
x = Multiply ( ) ( [ uhat , c ] )

# Squash ing t h e c a p s u l e o u t p u t s c r e a t e s s e v e r e b l u r r y a r t i f a c t s ,
# t hus we r e p l a c e i t wi th Leaky ReLu .
s _ j = LeakyReLU ( ) ( x )

c = Act iva t ion ( ’ softmax ’ , name= ’ sof tmax_digi tcaps2 ’ ) ( s _ j )
c = Dense ( 1 6 0 ) ( c )
x = Multiply ( ) ( [ uhat , c ] )
s _ j = LeakyReLU ( ) ( x )

c = Act iva t ion ( ’ softmax ’ , name= ’ sof tmax_digi tcaps3 ’ ) ( s _ j )
c = Dense ( 1 6 0 ) ( c )
x = Multiply ( ) ( [ uhat , c ] )
s _ j = LeakyReLU ( ) ( x )

# F i n a l d e n s e l a y e r ou t pu t a b i n a r y c l a s s i f i c a t i o n
pred = Dense ( 1 , a c t i v a t i o n = ’ sigmoid ’ ) ( s _ j )
return Model ( img , pred )

7.1.4 Train

def t r a i n ( s e l f , epochs , b a t c h _ s i z e =128 , s a v e _ i n t e r v a l = 5 0 ) :

h a l f _ b a t c h = i n t ( b a t c h _ s i z e / 2)

for epoch in range ( epochs ) :
# −−−−−−−−−−−−−−−−−−−−−
# Tra in D i s c r i m i n a t o r
# −−−−−−−−−−−−−−−−−−−−−
cnt =0
tra in_datagen = ImageDataGenerator ( r e s c a l e =1./255)
t r a i n _ g e n e r a t o r = tra in_datagen . f low_from_directory ( ’ data ’ ,
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t a r g e t _ s i z e =(64 , 6 4 ) , b a t c h _ s i z e=hal f_batch , class_mode=None )
for x in t r a i n _ g e n e r a t o r :

# Sample n o i s e and g e n e r a t e a h a l f b a t c h o f new images
noise = np . random . normal ( 0 , 1 , ( hal f_batch , 1 0 0 ) )
gen_imgs = s e l f . generator . p r e d i c t ( noise )

# Tra in t h e d i s c r i m i n a t o r
# ( r e a l c l a s s i f i e d as one s and g e n e r a t e d as z e r o s )
d _ l o s s _ r e a l = s e l f . d i s c r i m i n a t o r . t ra in_on_batch

( x , np . ones ( ( hal f_batch , 1 ) ) )
d_ loss_fake = s e l f . d i s c r i m i n a t o r . t ra in_on_batch

( gen_imgs , np . zeros ( ( hal f_batch , 1 ) ) )
d_loss = 0 . 5 ∗ np . add ( d _ l o s s _ r e a l , d_ loss_fake )

# −−−−−−−−−−−−−−−−−−−−−
# Tra in G e n e r a t o r
# −−−−−−−−−−−−−−−−−−−−−

# Sample g e n e r a t o r i n p u t
noise = np . random . normal ( 0 , 1 , ( batch_s ize , 1 0 0 ) )

# Tra in t h e g e n e r a t o r
# ( wants d i s c r i m i n a t o r t o m i s t a k e images as r e a l )
g_loss = s e l f . combined . t ra in_on_batch

( noise , np . ones ( ( batch_s ize , 1 ) ) )

# P l o t t h e p r o g r e s s
i f ( cnt%s a v e _ i n t e r v a l ==0) :

print ( "%d [D l o s s : %f , acc . : %.2 f%%] [G l o s s : %f ] "
% ( epoch , d_loss [ 0 ] , 100∗ d_loss [ 1 ] , g_ loss ) )

# I f a t s a v e i n t e r v a l => s a v e g e n e r a t e d image s a m p l e s
i f ( cnt%s a v e _ i n t e r v a l ==0) :

s e l f . save_imgs ( cnt )
cnt +=1

7.1.5 Save Images

def save_imgs ( s e l f , epoch ) :
r , c = 5 , 5
noise = np . random . normal ( 0 , 1 , ( r ∗ c , 1 0 0 ) )
gen_imgs = s e l f . generator . p r e d i c t ( noise )

# R e s c a l e images 0 − 1
gen_imgs = 0 . 5 ∗ gen_imgs + 0 . 5

f ig , axs = p l t . subplots ( r , c )
# f i g . s u p t i t l e ("DCGAN: G e n e r a t e d d i g i t s " , f o n t s i z e =12)
cnt = 0
for i in range ( r ) :

for j in range ( c ) :
axs [ i , j ] . imshow ( gen_imgs [ cnt , : , : , 0 ] , cmap= ’ gray ’ )
axs [ i , j ] . a x i s ( ’ o f f ’ )
cnt += 1

f i g . s a v e f i g ( " images/images_%d . png " % epoch )
p l t . c l o s e ( )

7.1.6 Save Models

def save_model ( s e l f ) :

def save ( model , model_name ) :
model_path = " saved_model/%s . j son " % model_name
weights_path = " saved_model/%s_weights . hdf5 " % model_name
options = { " f i l e _ a r c h " : model_path ,

" f i l e _ w e i g h t " : weights_path }
j s o n _ s t r i n g = model . t o _ j s o n ( )
open ( opt ions [ ’ f i l e _ a r c h ’ ] , ’w’ ) . wri te ( j s o n _ s t r i n g )
model . save_weights ( opt ions [ ’ f i l e _ w e i g h t ’ ] )

save ( s e l f . generator , " generator " )
save ( s e l f . d i scr iminator , " d i s c r i m i n a t o r " )
save ( s e l f . combined , " a d v e r s a r i a l " )
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7.2 Demonstration

7.2.1 Converting Models

This code converts the Keras H5 model to the TensorFlow protocol buffers.

def convert_to_pb ( w e i g h t _ f i l e , j s o n _ f i l e , i n p u t _ f l d= ’ ’ , output_f ld= ’ ’ ) :

import os
import os . path as osp
from tensorf low . python . framework import graph_ut i l
from tensorf low . python . framework import graph_io
from keras . models import model_from_json
from keras import backend as K
import tensorf low as t f

# w e i g h t _ f i l e i s a . hd f5 k e r a s model f i l e
output_node_names_of_input_network = [ " pred0 " ]
output_node_names_of_final_network = ’ output_node ’

# change f i l e n a m e t o a . pb t e n s o r f l o w f i l e
output_graph_name = j s o n _ f i l e [ : −4]+ ’pb ’

w e i gh t_ f i l e _pat h = osp . j o i n ( input_f ld , w e i g h t _ f i l e )
j s o n _ f i l e _ p a t h =osp . j o i n ( input_f ld , j s o n _ f i l e )
j s _ f i l e = open ( j s o n _ f i l e _ p a t h , ’ r ’ )
model_js= j s _ f i l e . read ( )
j s _ f i l e . c l o s e ( )
net_model = model_from_json ( model_js )
# l o a d w e i g h t s i n t o new model
net_model . load_weights ( w e i gh t _ f i l e _pat h )

num_output = len ( output_node_names_of_input_network )
pred = [ None]∗num_output
pred_node_names = [ None]∗num_output

for i in range ( num_output ) :
pred_node_names [ i ] = output_node_names_of_final_network+ s t r ( i )
pred [ i ] = t f . i d e n t i t y ( net_model . output [ i ] , name=pred_node_names [ i ] )

s e s s = K. g e t _ s e s s i o n ( )

constant_graph = graph_ut i l . c o n v e r t _ v a r i a b l e s _ t o _ c o n s t a n t s (
sess , s e s s . graph . as_graph_def ( ) , pred_node_names )

graph_io . write_graph (
constant_graph , output_f ld , output_graph_name , a s _ t e x t =Fa l se )

print ( ’ saved the constant graph ( ready f o r i n f e r e n c e ) a t : ’ ,
osp . j o i n ( output_f ld , output_graph_name ) )

return output_f ld+output_graph_name

# t f _ m o d e l _ p a t h = c o n v e r t _ t o _ p b (
# ’ g e n e r a t o r _ w e i g h t s . hd f5 ’ , ’ g e n e r a t o r . j s o n ’ , ’ s aved_mode l / ’ , ’ t f _ m o d e l / ’ )

7.2.2 Semantic Inpainting

This code implements semantic inpainting for demonstration purposes.

import tensorf low as t f
import numpy as np
import m a t p l o t l i b . pyplot as p l t
import cv2

IMAGE_SHAPE= [ 2 8 , 2 8 , 1 ]
ITERATIONS=1000

gen_input_name=" input_2 : 0 "
gen_output_name=" output_node0 : 0 "
dis_input_name=" input_1 : 0 "
dis_output_name=" output_node0 : 0 "
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momentum, l r = 0 . 9 , 0 . 0 1

# r e a d graph d e f i n i t i o n from p r o t o c o l b u f f e r
gen_graph_def = t f . GraphDef ( )
with open ( ’ generator . pb ’ , " rb " ) as f :

gen_graph_def . ParseFromString ( f . read ( ) )

z= t f . p laceholder ( t f . f l o a t 3 2 , shape = ( 1 , 1 0 0 ) )
gen_imgs ,= t f . import_graph_def ( gen_graph_def , input_map ={ gen_input_name : z } ,

return_elements =[ gen_output_name ] )
print ( " loaded generator " )

dis_graph_def = t f . GraphDef ( )
with open ( ’ d i s c r i m i n a t o r . pb ’ , " rb " ) as f :

dis_graph_def . ParseFromString ( f . read ( ) )
dis_imgs= t f . reshape ( gen_imgs , shape =[1]+IMAGE_SHAPE)
print ( dis_imgs . shape )

val id ,= t f . import_graph_def ( dis_graph_def , input_map ={ dis_input_name : dis_imgs } ,
return_elements =[ dis_output_name ] )

print ( " loaded d i s c r i m i n a t o r " )

mask = t f . p laceholder ( t f . f l o a t 3 2 , IMAGE_SHAPE, name= ’mask ’ )
image = t f . p laceholder ( t f . f l o a t 3 2 , IMAGE_SHAPE, name= ’ image ’ )
c o n t e x t u a l _ l o s s = t f . reduce_sum (

t f . c o n t r i b . l a y e r s . f l a t t e n (
t f . abs ( t f . mult iply ( mask , gen_imgs ) − t f . mult iply ( mask , image ) ) ) , 1 )

p e r c e p t u a l _ l o s s = t f . log (1−val id )
complete_loss = c o n t e x t u a l _ l o s s + 0 .1∗ p e r c e p t u a l _ l o s s
grad_complete_loss = t f . grad ients ( complete_loss , z )

with t f . Sess ion ( ) as s e s s :
s c a l e = 0 . 3
mask_val=np . ones (IMAGE_SHAPE)
l = i n t (28∗ s c a l e )
u = i n t (28∗ (1 .0 − s c a l e ) )
mask_val [ l : u , l : u , : ] = 0 . 0

in_image =( cv2 . imread ( ’ img_269 . jpg ’ , 0 ) )

# expand d imens i on i f i t s gray s c a l e image
i f IMAGE_SHAPE[ 2 ] = = 1 :

in_image=in_image . reshape (IMAGE_SHAPE)

in_image =( in_image . astype ( np . f l o a t 3 2 ) −127.5)/127.5

masked_image=(1+np . mult iply ( in_image , mask_val ) ) / 2

i f IMAGE_SHAPE[ 2 ] = = 1 :
masked_image=masked_image [ : , : , 0 ]

cv2 . imwrite ( ’ f r o n t /image . png ’ , masked_image∗255)

zhats=np . random . normal ( 0 , 1 , ( 1 , 1 0 0 ) )
v=0
for i in range ( ITERATIONS ) :

fd ={
mask : mask_val ,
image : in_image ,
z : zhats
}
outputs =[ complete_loss , grad_complete_loss , gen_imgs ]
loss , grad , g_imgs= s e s s . run ( outputs , f e e d _ d i c t =fd )
v_prev = np . copy ( v )
v = momentum∗v − l r ∗grad [ 0 ]
zhats += −momentum ∗ v_prev + (1+momentum)∗v
zhats = np . c l i p ( zhats , 0 , 1 )
i f ( i %10==0):

print ( " I t e r a t i o n { } " . format ( i ) )

# w r i t e c u r r e n t s t a t u s
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completed_img=np . mult iply ( g_imgs ,1−mask_val )+
np . mult iply ( in_image , mask_val )

completed_img =(1+ completed_img )∗1 2 7 . 5

i f IMAGE_SHAPE[ 2 ] = = 1 :
completed_img=completed_img [ : , : , 0 ]

cv2 . imwrite ( ’ f r o n t /image . png ’ , completed_img )

g_imgs= s e s s . run ( gen_imgs , f e e d _ d i c t ={ z : zhats } )

completed_img=np . mult iply ( g_imgs ,1−mask_val )+
np . mult iply ( in_image , mask_val )

completed_img =(1+ completed_img )/2

or ig inal_ image =(1+ in_image )/2

cmap=None

i f IMAGE_SHAPE[ 2 ] = = 1 :
completed_img=completed_img [ : , : , 0 ]
or ig inal_ image=or ig inal_ image [ : , : , 0 ]
cmap= ’ gray ’

f ig , axs = p l t . subplots ( 1 , 3 )
axs [ 0 ] . s e t _ t i t l e ( " Or ig ina l " )
axs [ 0 ] . imshow ( original_image , cmap=cmap )
axs [ 0 ] . a x i s ( ’ o f f ’ )
axs [ 1 ] . s e t _ t i t l e ( " Masked " )
axs [ 1 ] . imshow ( masked_image , cmap=cmap )
axs [ 1 ] . a x i s ( ’ o f f ’ )
axs [ 2 ] . s e t _ t i t l e ( " Completed " )
axs [ 2 ] . imshow ( completed_img , cmap=cmap )
axs [ 2 ] . a x i s ( ’ o f f ’ )
p l t . show ( )
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CHAPTER 8

EXECUTION AND RESULTS

“ We dont have better algorithms, we just have more data”

Peter Norvig,
Director of Research at Google Inc.

8.1 Training

Our research consisted of four networks: ACGAN, DCGAN, InfoGAN and
WGAN. Each of the networks was trained for 20,000 epochs each. The training
period for the individual networks took anywhere between a few hours and a couple
of days. For each network, we logged a few key metrics, mainly the Generator Loss
(GLoss), Discriminator Loss (DLoss) and the Accuracy (Acc).

Below we show graphically the performance of the (four) classical networks as
compared to the CapsNet discriminator augmented networks.

(a) Classical ACGAN (b) CapsNet augmented ACGAN

Figure 8.1: ACGAN metrics
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(a) Classical DCGAN (b) CapsNet augmented DCGAN

Figure 8.2: DCGAN metrics

(a) Classical InfoGAN (b) CapsNet augmented InfoGAN

Figure 8.3: InfoGAN metrics

(a) Classical WGAN (b) CapsNet augmented WGAN

Figure 8.4: WGAN metrics

The metrics of WGAN are at a smaller scale, so below is a comparison at the lower
scale.
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(a) Classical WGAN (b) CapsNet augmented WGAN

Figure 8.5: WGAN metrics - zoomed

A preliminarily analysis of the data shows us that our CapsNet augmented
networks, hence-forth referred to as the network name prefixed with "Caps", perform
comparably with the classical architectures.

Under ACGAN we see that CapsACGAN starts off with very high variance in
GLoss and DLoss. Over the course of 20,000 epochs, the variance gradually reduces
to match the Classical ACGAN metrics at the end. Accuracy of CapsACGAN, on the
other hand, quickly stabilizes to meet classical ACGAN metrics. As a side note,
ACGAN was the fastest trained network, taking roughly three hours to complete
20,000 epochs.

DCGAN and InfoGAN are interesting in the sense that they show a remarkable
shift in the GLoss metric. Even though it seems as if augmenting DCGAN with
CapsNet discriminator leads to increase in GLoss, a closer look reveals that increased
variation leads to faster learning of the generator network. Accuracy and DLoss
follow their classical counterpart closely.

WGAN happens to be the best and state-of-the-art. Consequently, the variance
in the metrics were at a much smaller scale, that is, the network is designed to be
more stabilized and balanced but this also leads to slower learning, we can see that
adding CapsNet discriminator speeds this up by adding slightly more variance while
the network is still balanced. We had to zoom-in to notice the difference between the
metrics. We see that an initial burst of high variance quickly stabilizes to trace a path
closely matching the classical architecture.
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8.2 Generation

At the end of every epoch we saved the outputs of the generator. Here we show
the outputs of generator of four networks after 20,000 epochs for comparison.

(a) Classical ACGAN (b) CapsNet augmented ACGAN

Figure 8.6: ACGAN outputs

As expected from the metrics the ACGAN and CapsACGAN produce very similar
outputs.

(a) Classical DCGAN (b) CapsNet augmented DCGAN

Figure 8.7: DCGAN outputs

The outputs of DCGAN and CapsDCGAN are almost indistinguishable but a closer
look reveals that CapsDCGAN produces more clear outputs and more percentage of
CapsDCGAN outputs look real.
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(a) Classical InfoGAN (b) CapsNet augmented InfoGAN

Figure 8.8: InfoGAN outputs

Even though the CapsInfoGAN output looks structurally better and has learned
faster but it is more noisier than that of the InfoGAN.

(a) Classical WGAN (b) CapsNet augmented WGAN

Figure 8.9: WGAN outputs

Finally in the WGAN outputs we can clearly see that CapsWGAN produces clear
and better outputs, hence has learned more quickly than the WGAN.
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8.3 Demonstration

Initially, for demonstration of semantic in-painting, we used the MNIST model of
CapsDCGAN that we used in the previous sections. We had promising results as seen
in the figure 8.10.

Figure 8.10: MNIST examples
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For the completion of faces however the process was more complex. We initially
trained CapsDCGAN on LFW dataset [16] for 50 epochs. Since LFW contains only
13,233 images, the model suffered from low generalization. So we decided to use the
larger CelebA dataset [10] for training. CelebA consists of 202,599 images of 10,177
celebrities. We trained CapsDCGAN on CelebA for only 9 epochs and still obtained
realistic images. The following are the completion outputs from CelebA model in
figure 8.11.

Figure 8.11: Face examples
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To facilitate demonstration and visual appeal we ported our completion code into a
webapp using flask and socketio. The webapp provides a way to select images, draw a
mask on them, and execute completion code. When performing the projected gradient
descent, the webapp displays the dynamic state of the completed image, the number
of iterations, and the graph of the loss function respect to the iteration, these values
are dynamically updated using socketio, which is a Web-socket library. Web-socket
provides a bidirectional communication channel between the client and the server.

Figure 8.12: Demonstration WebApp Interface
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CHAPTER 9

CONCLUSION

“A year spent in artificial intelligence is enough to make one believe in
God”

Alan Perlis,
First Turing award recipient

During the course of this project, we wished to replicate the results of the existing
state-of-the-art in Generative Models. We implemented a few different versions of
GANs with CapsNet. Our motivating assumption was that CapsNet would provide a
performance improvement. We based this on the idea that it is more capable of
understanding the variances in objects. This in turn should lead to lower data
requirements during training of the model and consequently lower power
consumption.

We provide a comparison between our novel CapsNet-based approach and other
implementations of GAN for the same task. To observe this we augment the code of
a few GANs, namely ACGAN, InfoGAN, DCGAN and WGAN, by implementing the
discriminator with CapsNet. We decided to work with a few standard metrics such as
Discriminator Loss, Generator Loss and Accuracy to measure its training performance.
The data while training was captured and visualized in the form of graphs.

In conclusion, we can confidently state that augmenting the GANs with CapsNet
was a fruitful endeavor. The CapsNet helped to reduce th training overhead
considerably when compared to classical networks while providing remarkably
similar results. Our research shows that embedding CapsNet into the GAN does not
degrade its performance and, in certain cases, improves upon it.
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